Activated Protein Kinase A Is Required for Differentiation-Dependent Transcription of the Decidual Prolactin Gene in Human Endometrial Stromal Cells.
نویسندگان
چکیده
Decidualization of human endometrial stromal (ES) cells in vitro is induced by cAMP analogs and ligands that elevate cellular cAMP levels. A marker of this differentiation process is the activation of the decidual PRL (dPRL) promoter. In a primary ES cell culture system we show that relaxin not only acutely but permanently elevates cellular cAMP levels and leads to induction of PRL secretion after 6 days Northern and Western blot analyses revealed that all regulatory subunit isoforms (RI alpha, RI beta, RII alpha, and RII beta) and catalytic subunits C alpha and C beta of protein kinase A (PKA) are expressed in ES cells. Transcript levels of PKA subunit isoforms are not altered during decidualization but in decidualized ES cells, exposed to relaxin for more than 6 days a significant reduction of RI alpha protein level occurs, whereas levels of all other forms remain unchanged. Reduction of R subunits might result in a net increase in free C subunit activity. This alteration is not due to a change in the mitotic state of the cells, as proliferating cell nuclear antigen is evenly expressed in undifferentiated and differentiated ES cell cultures. In transient transfections of undifferentiated ES cells, the dPRL promoter is activated by 8-bromo-cAMP and the C subunit (C beta) of PKA. This induction as well as the differentiation-dependent activity of the dPRL promoter in transfected decidualized cells are effectively abolished by the coexpression of protein kinase inhibitor. We demonstrate that 332 bp of the dPRL promoter are sufficient to mediate full inducibility by cAMP. Activation of the dPRL promoter by cAMP in ES cells occurs in two steps: an initial weak induction within 12 h and a subsequent, much more pronounced induction after 12 h. The secondary induction is not seen with a control construct driven by a consensus cAMP response element (CRE) linked to a minimal promoter and is absent from a uterine cell line that does not express the endogenous dPRL gene. The early response of the dPRL promoter depends upon a noncanonical CRE at position -12, as mutation of this sequence leads to abolition of the early, but not the delayed, induction. The major activation depends upon a different region within 332 bp of the dPRL promoter; is probably indirect, as it follows different kinetics compared to a classical CRE-mediated response; and is specific to ES cells.
منابع مشابه
I-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملI-33: Oxidative Stress Responses in EarlyPregnancy
Background: Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Materials and Methods: Laboratory-based analysis of endometrial biopsies and primary endometrial cultures. Results: Using primary cultures, we show that modest levels of reactiv...
متن کاملI-32: Implantation and Recurrent PregnancyLoss
Background: Recurrent pregnancy loss (RPL), defined as 3 or more consecutive pregnancy failures, is a common and distressing disorder. Chromosome instability in the conceptus is the most common cause whereas uterine factors are invariably invoked to explain nonchromosomal miscarriages. These uterine factors are, however, poorly defined. Materials amd Methods: Laboratory-based analysis of endome...
متن کاملRegulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone.
cAMP is required for differentiation of human endometrial stromal cells (HESCs) into decidual cells in response to progesterone, although the underlying mechanism is not well understood. We now demonstrate that cAMP signaling attenuates ligand-dependent sumoylation of the progesterone receptor (PR) in HESCs. In fact, decidualization is associated with global hyposumoylation and redistribution o...
متن کاملClearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senesc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 138 3 شماره
صفحات -
تاریخ انتشار 1997